3y^2+26y+12=0

Simple and best practice solution for 3y^2+26y+12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+26y+12=0 equation:


Simplifying
3y2 + 26y + 12 = 0

Reorder the terms:
12 + 26y + 3y2 = 0

Solving
12 + 26y + 3y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
4 + 8.666666667y + y2 = 0

Move the constant term to the right:

Add '-4' to each side of the equation.
4 + 8.666666667y + -4 + y2 = 0 + -4

Reorder the terms:
4 + -4 + 8.666666667y + y2 = 0 + -4

Combine like terms: 4 + -4 = 0
0 + 8.666666667y + y2 = 0 + -4
8.666666667y + y2 = 0 + -4

Combine like terms: 0 + -4 = -4
8.666666667y + y2 = -4

The y term is 8.666666667y.  Take half its coefficient (4.333333334).
Square it (18.77777778) and add it to both sides.

Add '18.77777778' to each side of the equation.
8.666666667y + 18.77777778 + y2 = -4 + 18.77777778

Reorder the terms:
18.77777778 + 8.666666667y + y2 = -4 + 18.77777778

Combine like terms: -4 + 18.77777778 = 14.77777778
18.77777778 + 8.666666667y + y2 = 14.77777778

Factor a perfect square on the left side:
(y + 4.333333334)(y + 4.333333334) = 14.77777778

Calculate the square root of the right side: 3.844187532

Break this problem into two subproblems by setting 
(y + 4.333333334) equal to 3.844187532 and -3.844187532.

Subproblem 1

y + 4.333333334 = 3.844187532 Simplifying y + 4.333333334 = 3.844187532 Reorder the terms: 4.333333334 + y = 3.844187532 Solving 4.333333334 + y = 3.844187532 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-4.333333334' to each side of the equation. 4.333333334 + -4.333333334 + y = 3.844187532 + -4.333333334 Combine like terms: 4.333333334 + -4.333333334 = 0.000000000 0.000000000 + y = 3.844187532 + -4.333333334 y = 3.844187532 + -4.333333334 Combine like terms: 3.844187532 + -4.333333334 = -0.489145802 y = -0.489145802 Simplifying y = -0.489145802

Subproblem 2

y + 4.333333334 = -3.844187532 Simplifying y + 4.333333334 = -3.844187532 Reorder the terms: 4.333333334 + y = -3.844187532 Solving 4.333333334 + y = -3.844187532 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-4.333333334' to each side of the equation. 4.333333334 + -4.333333334 + y = -3.844187532 + -4.333333334 Combine like terms: 4.333333334 + -4.333333334 = 0.000000000 0.000000000 + y = -3.844187532 + -4.333333334 y = -3.844187532 + -4.333333334 Combine like terms: -3.844187532 + -4.333333334 = -8.177520866 y = -8.177520866 Simplifying y = -8.177520866

Solution

The solution to the problem is based on the solutions from the subproblems. y = {-0.489145802, -8.177520866}

See similar equations:

| 4n+28=60 | | 12(x+9)=x^2 | | 19u+28=5u | | 136-y=259 | | X+4=10000 | | 10v=-10+8v | | 24/3=x/2 | | 4+v=0 | | 8q^2-6q=7q^2-9q+10 | | x+9(12)=x^2 | | -10+2k=k | | -4(3m-6)=72-3(m-8) | | 30x+7=0 | | x^3+12x^2+36z=0 | | x+0.8=-3.15 | | 7(z+6)-(5z-1)=11z | | 3+v=45 | | (B+1)(3b-1)=0 | | 2/18=9/x | | -4x-6y=6 | | -8+8p=10p | | 56=2(12)+2w | | -8j=-9j+9 | | 7=v/11.2 | | 6=-(4/y) | | mod(x)+mod(2y)=2 | | 8+n=2n | | 165/582 | | 4(3m+10)= | | -4ln=3 | | x(x+20)=300 | | 9d=10+10d |

Equations solver categories